Raspberry Pi TV server using TVheadend

I have a projector out in the theatre room, however, this same room does not have any coax run for TV reception. Nor does the projector have a tuner for Digital TV. Thus the idea for the RPi TV streamer! I could have easily gone to the local tech shop and purchased a tuner and ran some coax, but I already have an android device hooked up to the projector, why not try and stream TV to it locally in the house. My own IPTV service of sorts.

I do want to give a bit of a shout out to CWNE88, (Go follow him if you get a chance!) This is the guy that got me started streaming TV via the Raspberry Pi, however he concentrates a lot on multicast streaming and to be honest, most of us do not have the infrastructure to handle multicast traffic on our LAN. So I had to find an alternative option that actually worked. (dvblast works great…if you have suitable switches/routers to handle multicast) Anyhow, during my research, I stumbled across TVheadend. I learned pretty quickly that it could be installed on a Raspberry Pi and be used to stream tv via HTSP. (Home TV Streaming Protocol) HTSP is a TCP based protocol and works in a unicast type fashion without killing your home network.


This is the hardware you will require:

  • Raspberry Pi 3 B+ (This is what we tested with)
  • USB Extension Cables
  • Good quality 5v power supply for RPi
  • USB TV Tuner (We used Avermedia Volar Green HD @ $29ea)
  • Splitter (We used a 3-way splitter to really push the RPi3B+)
  • F-type adapters
  • USB to Ethernet Adapter (Optional)


Prerequisites

I am going to assume you know how to get Raspbian “Stretch” Lite onto your Raspberry Pi. If not check out the “Prerequisites” of this post here. It will walk you through, downloading the image, using Etcher to put the image onto an SD card, setting up the RPi via Raspi-config, and enabling SSH. Once you have completed those steps, come back here and continue.

The end state of the “Prerequisites” is to have access to your Raspberry Pi via SSH and have the command line up and in front of you.


For those confident on the RPi

For those of you who want to skip straight to the chase, the code below outlines all the commands issued to the RPi to install TVheadend. I will then take you step by step through these commands below:


Step 1: Update/Upgrade the Raspberry Pi

First things first, you need to ensure your Raspbian repositories are up to date. Run the Following commands:

sudo apt-get update

sudo apt-get upgrade
Select ‘Y’ and go get a coffee. This process can take 5-10 minutes.


Step 2: Install TVheadend server

Now that your Raspberry Pi is fully up to date, you need to run the following commands:

sudo apt-get install dirmngr

This command may not need to be run, however, for me, TVheadend would not install without it.

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys 379CE192D401AB61

More info about installing the GPG keys can be found here.

echo "deb https://dl.bintray.com/mpmc/deb raspbianstretch stable-4.2" | sudo tee /etc/apt/sources.list.d/tvheadend.list

Again, more info on where to get the correct repo for the RPi ishere.
Check and make sure the correct one is used. This can update at times.

sudo apt-get update

In a nut-shell, we are telling ‘apt-get’ to grab any updates from the repository we added above. This will then allow us to install TVheadend because it now knows where to ‘grab’ it from.

sudo apt-get update

In a nut-shell, we are telling ‘apt-get’ to grab any updates from the repository we added above. This will then allow us to install TVheadend because it now knows where to ‘grab’ it from.

sudo apt-get install tvheadend

Select ‘Y’ and allow TVheadend to install. If you tried to run this command without doing the steps above, you would run into errors.

During the install, you will be asked to set an administrator username and password. Be sure to set this correctly and remember. You do not get two chances to enter the password. I learned this the hard way!

If for some reason, you did stuff up the username and password. Uninstall tvheadend with sudo apt-get purge tvheadend and sudo apt-get autoremove Then reinstall tvheadend again.


Step 3: Log into TVheadend

Now that your Raspberry Pi is fully up to date, you need to run the following commands:

Open up a web browser and enter the IP address of your Raspberry Pi. Also, use the port number ‘9981’. For example http://192.168.1.168:9981 (Your IP address for the RPi will be different.) Type ifconfig in the terminal screen to confirm.

When you first open Tvheadend, you will get the Wizard which will step you through setting up the tv tuners. Hopefully, you left them plugged in from the start. If not, plug them in and restart the Raspberry Pi. Go back into the web browser and log back into TVheadend.


Step 4: Configure TVheadend for streaming

The configuration for TVheadend settings is coming soon. Thanks for your patience…

I have no doubt, however, if you got this far, you will be able to bumble your way through the configuration. This was the easiest part. I then used VLC to watch the streams. You can get these links from inside Tvheadend.



Video: Example Hardware Configuration

 

 


A Brief History of the Raspberry Pi

Who would have thought a US$35 computer would change our lives so much. The Raspberry Pi foundation have changed the way we learn, teach and innovate by bringing a hardware platform which is cheap enough for the ‘average joe’ yet powerful enough to drive some of our most ambitious ideas. I have no doubt in my mind that I have left some info out here. Please feel free to leave a comment below to educate me a little bit! happy for input. I’ll keep updating this timeline as new releases come out. Thanks.



Some additional credits for the pics and info: Adafruit.com, Raspberry Pi Foundation, elinux.org

Who would have thought a US$35 computer would change our lives so much. The Raspberry Pi foundation have changed the way we learn, teach and innovate by bringing a hardware platform which is cheap enough for the ‘average joe’ yet powerful enough to drive some of our most ambitious ideas. I have no doubt in my mind that I have left some info out here. Please feel free to leave a comment below to educate me a little bit! happy for input. I’ll keep updating this timeline as new releases come out. Thanks.


The Alpha Boards

Announced in August 2011, the ‘Alpha’ boards were among the first revisions. The Board itself was of a large format for debugging, was populated with headers for GPIO, JTAG, DSI, CSI and switches for LED and I/O testing.


Raspberry Pi First Production Board

Announced in 29th February 2012, The first of the “credit-card” sized computers was released. The initial batch of 10,000 (All Model-B’s) which were manufactured in China.


Raspberry Pi Model B

The RPi full production board – Model B Rev 2.0 was announced in April 2012, first orders were not sent out until June 2012. Manufacturing and orders were made via RS and Farnell. This meant that higher volumes of units were produced and made available. September 2012 saw the announcement of Model B rev 2.0 also being manufactured by Sony.


Raspberry Pi Model A

As of February 2013, the Model A was made available from distributors in Europe. The board had 256MB of RAM rather than the originally planned 128MB. The RPI foundation produced a small Beta batch of boards before handing over manufacturing to RS and Farnell. The Model A boards use an identical Rev 2.0 PCB but come with a different selection of components fitted.


Raspberry Pi Model B+

Announced on the 14th July 2014 The Model B+ was the first of the new layout. The B+ featured a new and faster processor, new VideoCore, 512MB RAM, Micro SD, 4 x USB slots, HDMI and many other upgrades.


Raspberry Pi Model A+

A few months after the release of the B+, the RPi foundation released a lower-cost variant labeled ‘A+’, At a new low price point of US$20 it was a smaller form and only a few components had been left out. But from an IoT perspective, it was still a very powerful unit for embedded hardware projects.


Raspberry Pi 2 Model B

Announced n 2nd February 2015. The RPi 2 Model B+ retained the same US$35 which was key to the continued success of the platform. The RPi 2 featured another upgrade to the CPU and an upgrade to 1GB of RAM. Other changes were also made.


Raspberry Pi Zero

The Raspberry Pi Zero was released in November 2015. The idea behind the Zero was a cheaper/smaller form factor that could be used to embed inside smaller projects. On 28th February 2017, the foundation then released the RPi Zer ‘W’ which had built-in wireless and Bluetooth.


Raspberry Pi 3 Model B

Another upgrade to the CPU (1.2Ghz 64-bit quad-core ARM Cortex-A53) was announced with a new release of the RPi 3 Model B on the 29th February 2016. Again the Raspberry Pi foundation achieved the same US$35 price point.


Raspberry Pi 3 Model B+

Announced in “Pi Day”, 14th March 2018. The Raspberry Pi 3 Model B+ is an incremental improvement over the previous RPi 3 for the same US$35 price.


Some additional credits for the pics and info: Adafruit.com, Raspberry Pi Foundation, elinux.org


Before and After with Adobe Lightroom

On our recent trip/honeymoon to Koh Samui, I thought I would conjure my inner photographer. It’s fair to say that I still have a lot to learn. The camera I had was a Canon 80D. (Yes not a full frame camera, but I primarily purchased it for the video functionality.) However, saying that it was pretty cool getting down to the beach and having a go at mashing the buttons and seeing what came out at the other end. The results were actually pretty average….as expected. Practice makes perfect hey! Anyhoo nothing a bit of adobe lightroom can’t fix!

I’m definitely no expert on Adobe Lightroom, however, a couple hours messing around and the following pics were ‘Enhanced’.

Drag the slider to reveal the edited image.


This is my very first attempt at a long exposure shot. Trying to draw out all the light I could. To the naked eye, it was pitch black down at the beach, except for the lights of the restaurant. It was difficult to check settings/change settings on the fly as I was doing it due to low light.


To my eye, the green grass did look as good as the Adobe Lightroom edit. I guess I still have a lot of work to do on the camera settings. It was very bright and I was a little bit hungover…


I tried to do something a bit different here. The edit was supposed to highlight the face of the statue and make it stand out more. How do you think I went? any tips? Maybe I could have blurred our the background.


This is what happens when you are really hungover, laying on a very comfortable cushion chair and have absolutely zero motivation to do anything. Yep, take photos of trees and the sky for practice! In the Lightroom version, I tried to bring the green and blue out, however, I think the white in the balloon has become a bit green.


Last one promise! The idea here was to try and dray some of the brown back out of the rock face and the greens into the shrubs. It worked ok I think. Still some work to do.


Well, after all of that it is clear I still have a lot of work to do on the whole “Camera Settings” and “Technique side of photography. Would it be correct in saying that a good photographer should not need to edit his/her photos at all to make them better?


Controlling GPIO with your travel router

The GL-inet range of travel routers are sold with the understanding that we can use them as more than just a router. The idea of being able to interconnect them with everyday items is very appealing. They call this the ‘internet of things’. So the curiosity got the better of me and decided to see if we could do the most basic of tasks. Switch a relay module!

Sounds simple, and sure enough, once we did a bit of research, it was. Keep reading to find out the basics of setting up your GL router to trigger a relay module using the built-in GPIO pins. If the config stuff is a bit boring for you, skip directly to the working video below!


Some light reading/research

  • http://wiki.openwrt.org/doc/hardware/port.gpio (Understand how OpenWrt and GPIO works)
  • You will require a GL-inet router. We used a GL-MiFi and a GL-AR150
  • You will also require a 5V relay and some headers/jumpers to connect
  • A soldering iron


Pinouts (For reference)


Solder some header pins to your device

First of all, you will need to decide which what sort of relay you are going to use and which pins to utilize. I only had 5V relay spare, thus I need to grab 5v from the board and a signal from a GPIO pin. Connect the 5V + and GND up and the signal/GPIO.

The gallery above has the pinouts for the GL-MiFi and the AR-150. Check these to determine the pins you want to use.


Add some config to the router

SSH into your router, locate the file: /etc/rc.local – Add the config below. Remember to set the pin number to the GPIO you intend to use. This will enable ‘output’ on that particular GPIO. Also, make sure you insert before ‘exit 0’


Add some config to the router

Shutdown your router. Connect up your relay to the 5V source, and the GPIO you selected in the rc.local config. Power back on your router, SSH back in and run the commands below. “1” will turn the relay on, and “0” should change the state so that it is off.



REVIEW: GL-MiFi 4G Smart Travel Router

If like me, you travel a lot, then having a solid travel router that allows me to work on the move securely and with anonymity is a necessity. The GL-MiFi router has proven to be a solid and reliable unit that has some perks that other travel routers cannot match. This review will cover some of the pros and cons. However, saying that, the Pros far outweigh the cons!

The GL-MiFi is powered by an Atheros AR9331 processor, is small, lightweight and contains a slot for various PCIe 3G or 4G modules. Combine that with 150Mbps Wi-Fi and you have yourself a very powerful little device. The GL-Mifi runs an embedded OpenWrt system, is extremely extendable via hardware and software. It can be used in mobile applications, industrial, commercial or at home.


Pros

  • 3G/4G capable
  • Built in Battery for mobile use
  • OpenVPN client capable
  • Excellent portability
  • 6-8hrs uptime on battery

Cons

  • When trying to charge the battery, router turns on.
  • GL-inet frontend software can be clunky at times.
  • Sim card can easily be inserted incorrectly.



Specifications

CPU  Atheros AR9331, @400MHz
Memory  DDR 64MB/ FLASH 16MB
Interfaces  1 WAN, 1LAN, 1 USB2.0, 1 micro USB (power), SIM card slot, MicroSD card slot, Antenna SMA mount holes
Frequency  2.4GHz
Transmission rate  150Mbps
Tx power (maximum)  18dBm
Protocol  802.11 b/g/n
Power supply 5V/2A
Power consumption  <3W
Dimension, Weight 105*72*27mm, 170g


The Hardware

When you first get your hands on the router, you notice that the enclosure is very solid. (As you can tell, I have dropped this unit twice… and it still works!) Nothing about the physical form of this router says “cheap” or “made in China”, The quality is second to none. All clips, buttons, and panels feel as if they will last the distance. This gives me confidence, I was certainly not afraid to throw it in my backpack with all the other crap I carry around.


3G/4G Module(s)

One of the standout inclusions in this travel router is the modulized 3G/4G PCIe cards that can be included. We ordered the Quectel EC25-AU with the unit. The seamless integration of this module with the built-in WiFi means that we can share a 3G/4G connection with as many devices as we need to. The configuration is as easy as inserting a sim card and selecting the region and provider. The module connects very quickly, so long as you have a data plan you will have connectivity to the internet. Of all the GL-inet travel routers the GL-MiFi is the only one with integrated cellular. Sure the other travel routers can use a USB dongle and tether, but nothing beats the quality and reliability of these built-in modules. For more info on the Quectel 3G/4G modules check them out here.


The Software

The GL-MiFi runs an OpenWrt firmware with a custom front-end user interface for its users. I think the ‘vastness’ of the LuCi interface could be a bit daunting for some, so they decided to write a front-end graphical user interface (GUI) that is easier to use and understand. From a basic user point of view, I think they achieved this goal. However some of the more advanced tasks you still need to achieve from the LuCi interface.

The custom interface interacts with OpenWrt and at times can feel a little bit clunky. Firmware improvements are being rolled out all the time and in the few months I have had the unit, I can see that the GL-inet crew are developing this frontend and fixing bugs as they come up.


The Fun Stuff

By Far the coolest part of the GL-inet routers is the fact that they can operate as an OpenVPN client and a Tor router. (We will do a post soon on setting up as a Tor router.) However, for now, we are going to focus on the OpenVPN side of the device. The OpenVPN client can be used in two ways. Either connect to your own self-hosted VPN server or connect to one of the popular paid VPN services. The paid services allowing anonymity and safety of your data whilst traveling, or operate through your own self-hosted VPN for access back into your business or home network. A typical setup of the OpenVPN service through a paid provider can be found here. (The setup on this router is the same for the MiFi)

If you have a keen eye on the GL-inet routers then you might have also seen in the newest firmware an ‘OpenVPN server’ being rolled out in beta form. I am yet to have a play with this, however, it is exciting to see a device no bigger than a rich-mans wallet hosting its own VPN server.


What next?

So many cool things still yet to be achieved with this router. Here is my list, in no particular order, of the bits and pieces I want to achieve.

  • Solar power kit to run the MiFi indefinitely.
  • Run up the Tor firmware.
  • Look at Mesh firmware
  • 3G/4G VPN tunnels into other networks
  • Control relays from GPIO pins onboard.

If you have any thoughts on what else we could do here, let us know in the comments below. Very keen to get your thoughts!!!



Get access to your PI ZERO W without a keyboard, mouse or monitor

So you purchased a Raspberry Pi ZERO Wireless and like me, did not realize that you would have no way to actually access the small form factor computer, because it does not have any standard USB ports. You actually require an OTG cable to attach any peripherals to the PI ZERO… well I have a pretty easy fix for you. It involves building the SD card using ETCHER (As seen here) or check out the links below. Adding a config file for the built-in wireless (Assuming you have a PI ZER W) and turning on SSH. If you can achieve this you will then have unobstructed access to your new PI ZERO wireless.


What do you need?

  • PI ZERO W
  • Micro USB cable for power
  • 2.1A Power supply



Step 1. Setup SD card and download your image.

Download Raspbian Stretch Lite and use Etcher to get the image on your SD card. Grab your copy of Raspbian from here. The prerequisite steps here will walk you through Etcher. We will run the ‘Lite’ version on the PI ZERO because it does not have the processing power of the RPI3. Also, there is no point loading the GUI if we do not intend to use it for that purpose.

Note: Once etcher is complete, you may need to unplug/plug your SD card back in. Etcher may unmount the drive for you when it is finished. Also if windows spit up some errors asking to format the drive. Do not do it!


Step 2. Add two files to the PI ZERO SD card to allow wifi and ssh to connect on power up

The first thing we need to do is create two files in the root of the SD card. When you plug the SD card back into your computer, look for the drive called “boot”. You need to create two files. Once called “ssh” and another called “wpa_supplicant.conf” Please note that the file called ‘ssh’ has no file extension, and wpa_supplicant.conf has a file extension of ‘.conf’

The ‘ssh’ file can remain blank, we do not need to add any config to it. This will simply enable SSH on the PI ZERO. However the ‘wpa_supplicant.conf’ file will require us to copy and paste this config onto it.


Step 3. Put the SD card into your PI ZERO and power it up

Put the SD card into the PI ZERO and power up the PI. It will take approx 30sec to a minute for it to power up, get wifi connectivity, grab a DHCP address from your router and enable the SSH service. The problem we have now, however, is that we do not know the IP address of the PI ZERO for us to SSH into.

To find the IP address of the PI ZERO, we are now going to use ‘ANGRY IP’ Scanner on our local computer. You can see a run-down of how to find your RPI IP address here also.

If you don’t want to check out the link above. Then Go download angry IP and run it up. It is pretty easy to use and will ping every active device on your network to tell you if it is UP or DOWN. The hardest part is identifying the correct Pi on the network. If you are like me, you may have more than one.


Step 4. Now that we know the IP address of our PI ZERO, lets try SSH into it.

Open up ‘Putty’ and enter the IP address into the required field. Make sure the SSH radio button is selected. Generally, port 22 is suitable for SSH. (This is the default port.) Then click ‘Open’ at the bottom.

So long as the PI ZERO has wifi connectivity you should now be able to SSH into your PI. I would now start to update the build/packages and also look at changing the hostname so that it can be identified easier on the network.



The easiest way to build a virtual machine

Building a virtual machine can be a bit of a daunting task. However, in this video, we use ‘Virtualbox’ to make it super simple. Virtualbox is a free software title and has a bunch of features that rival other virtualization platforms. The video below gets you up to the stage of installing the operating system. We purposely did not cover this step because all operating systems are different. In our scenario, we use Ubuntu Server, as that is what we will be deploying our VPN server on. However, you may want to use windows 10 or OSX as your OS.



Some additional information and handy links

TIP 1:

If you intend to use USB 2.0 and USB 3.0 devices with your virtual machine from the host machine then be sure to install the Expansion pack that is separate to VirtualBox. This expansion pack includes tools such as Support to USB 2.0 and USB 3.0 devices, VirtualBox RDP, disk encryption, NVMe and PXE boot for Intel cards. You can download it here: https://www.virtualbox.org/wiki/Downloads

TIP 2:

After the setup of the image, you can dismount the image file. Virtualbox should un-mount the image automatically, however, if it does not and you end up back at the OS setup, un-mount the image file and reboot the VM.



How to setup VPN on a mini travel router

In this scenario we want to use a mini travel router to act as a VPN client so that when we connect any device to it we know the data will be safe and traverse via a VPN. This kind of setup has a few benefits. The first being the fact that we only need to load one VPN config onto the router and any device that connects to it will use the VPN. This saves us time in setting up our phone, PC or tablet with the VPN config. We can assume that when connected to the travel router we are using the VPN.

The second is portability and travel. Using the travel router in a hotel or a restaurant means that our data is safe and secure. (Assuming you connect to the local wifi with the travel router in bridge mode.)

For this demo we have decided to use the GL-AR300M Mini smart router. This router acts as an OpenVPN client which is what sets these small devices apart from any others. Not all travel routers have this functionality.


Signing up to a VPN service

The first thing we need to do is sign up to a VPN service. Yes we could run our own VPN server, but whats the point when you can get top class servers and better speeds for a few dollars a month. Not all VPN services are alike. Some keep logs, some don’t, some allow P2P traffic, some don’t (Few VPNs have been able to prove they don’t keep logs….but from a security point of view, a VPN with no logs suits us the best.) We also want to look at where the servers reside and what services we can put over the VPN. For example we do not want to connect to a server in Europe if we are located in Australia. However the Australian server may not allow P2P traffic or torrenting. These are just a few of the things to consider when signing up.

We use IPvanish, it is a reliable, no logging VPN services which we have no issues with. Feel free to give it a go. Or do a quick google search and you will be inundated with services to use.


Where to obtain the config files for OpenVPN?

As we are using the GL-AR300M and it uses the OpenVPN protocol we must search our VPN provider for an OpenVPN configuration and certificate. Without this we cannot connect securely to the VPN service. Most services will have a location and the files will be split into servers. Pick the server you require and download the OpenVPN config and certificate. In out case we downloaded every single OpenVPN config for all servers. We then extracted the config we wanted (A Melbourne based server) and created a .zip file with only that config and the certificate.


Loading the config onto the travel router

Depending on how the OpenVPN config is delivered to you, there may be an additional step to create a zip file with the certificate and the config. At times the OpenVPN config file can include the certificate. But generally for VPN services a separate VPN certificate is used.

Log into the GUI of your router and located the OpenVPN tab. From here we can either upload the OpenVPN config or our ZIP file containing the config and the certificate. Once installed, we can then go ahead and activate the VPN profile. You will see a log at the bottom which indicates if/when it is connected and how much data is passing over the VPN. You can also look into using other settings to confirm that the VPN is being used.

You may be greeted with some VPN authentication. You only need to do this once and it is most likely the same login that you use for the VPN service. For IPVanish it will be the email that you registered with and the same password you use to log into the website.

Once Authenticated, the VPN should be good to go, simply click the ‘enable’ checkbox and ‘apply’ the settings. You should then see the VPN begin to connect. If you get errors in the log at this stage it will be an error with the certificate, OpenVPN config or your Authentication. It is possible to load up multiple OpenVPN configs. Use the dropdown box to select the server/config you want to connect through then click apply.


Some assumptions we have made...

This tutorial assumes that you have already connected your travel router to a hotspot with internet ie. Hotel, Maccas, Home. Obviously this is the link that we will tunnel through with our VPN service. There are some settings to ensure that internet does not work without a VPN connection. This ensures that the VPN is being used at all times. Also we set the DNS to use Google DNS. (8.8.8.8 as primary and 8.8.4.4 as alternate.)


Confirm VPN is working

One way to confirm that your internet traffic is travelling through the VPN is to use the https://ipleak.net/ website when you are connected. You should see that ‘your’ IP address is that of the VPN server you have selected. Also can check to make sure the DNS servers being used are masked.


Powering Ubiquiti links from 12v

So it seems that I can power a Ubiquiti Bullet and Rocket directly with DC 12v. In the past I have been chasing POE and wasting precious milli-watts converting 12V to POE standard (Usually 24v or 48v) then powering the devices.  A power saving can be made by connecting direct to 12V. If using a solar setup, the power savings can mean more up-time, and better use of your batteries. Some testing will follow this blog post. However in the interim, it seems pretty stable here in the workshop.


How to make your own cable for 12v power supply.

  • RJ-45
  • RJ-35 Crimp
  • Pliers
  • Box Cutter
  • Straight through Ethernet cable

In a nutshell, the Ubiquiti Bullets and Rockets grab power from 4 pins on a standard RJ-45 connector. In our case here in Australia (Blue/White-Blue) pins 4 & 5 will carry 12v+ and pins 7/8 12v-.


Prepare your cable

If you have the resources to cut up a straight-through cable, then go ahead and cut one end off. (Otherwise you will have to complete two terminations) Strip the cable back a bit to expose the pairs of wires. Identify the solid blue and Blue-White wires. These will be your 12V Positive injection points. Now identify the Solid Brown and Brown-White wires. This will be your 12V Negative injection point. From here identify the remaining cores and insert them into an RJ-45 housing.

  • PIN 1 – White-Orange
  • PIN 2 – Orange
  • PIN 3 – White-Green
  • PIN 6 – Green

Now crimp your RJ-45 and you are all done. The bare wires can be used in anyway to inject 12v. ie Barrel jack. I would use a fuse close to the source to protect your equipment. Also confirm the pinouts prior to plugging in. The last thing you want is to fry your Ubiquiti gear.


Or Don't hack up a cable and buy some injectors

If you want that more professional look, then you can always purchase a few of these injectors. Have a look at the specs though and make sure the power inputs are on pins 4/5 and 7/8. Let me know how your setup goes? I really need to do some testing on the longevity of this type of setup. My only concern is that the fluctuating 12v from batteries could damage the Ubiquiti gear over time. Maybe I need to look at a circuit to provide clean power.



The ultimate 4wd spot from above - DRONE

On a recent trip to Kalbarri, we decided that the town was WAY to busy and we should try and go up river. We found some cracker spots for a day trip and decided to put up the drone.

I’m still a bit trigger happy on the drone, but getting smoother with the controls. It did not help sitting in the passenger seat of the 4wd whilst trying to play pilot.

Kalbarri is located approx 5 hours drive north of Perth.